

Component-Based Construction of a
Science Learning Space

Kenneth R. Koedinger, Daniel D. Suthers,1 and Kenneth D. Forbus

Human-Computer
Interaction Institute

Information and
Computer Sciences

Institute for the
Learning Sciences

Carnegie Mellon University University of Hawaii Northwestern University
E-mail: koedinger@cs.cmu.edu, suthers@hawaii.edu, forbus@ils.nwu.edu

Abstract. We present a vision for learning environments, called Science Learning
Spaces, that are rich in engaging content and activities, provide constructive
experiences in scientific process skills, and are as instructionally effective as a
personal tutor. A Science Learning Space combines three independent software
systems: 1) lab/field simulations in which experiments are run and data is collected, 2)
modeling/construction tools in which data representations are created, analyzed and
presented, and 3) tutor agents that provide just-in-time assistance in higher order skills
like experimental strategy, representational tool choice, conjecturing, and argument.
We believe that achieving this ambitious vision will require collaborative efforts
facilitated by a component-based software architecture. We have created a feasibility
demonstration that serves as an example and a call for further work toward achieving
this vision. In our demonstration, we combined 1) the Active Illustrations lab
simulation environment, 2) the Belvedere argumentation environment, and 3) a model-
tracing Experimentation Tutor Agent. We illustrate student interaction in this Learning
Space and discuss the requirements, advantages, and challenges in creating one.

The Science Learning Space Vision
Imagine an Internet filled with possibility for student discovery. A vast array of
simulations are available to explore any scientific field you desire. Easy-to-use data
representation and visualization tools are at your fingertips. As you work, intelligent
tutor agents are watching silently in the background, available at any time to assist
you as you engage in scientific inquiry practices: experimentation, analysis,
discovery, argumentation. This is our vision for Science Learning Spaces. Table 1
summarizes how this vision contrasts with typical classroom experience.

Table 1. What Science Learning Spaces Have to Offer
 Typical Science Class Science Learning Space Vision

Content Lectures, fixed topics, fixed
pace, focus on facts

Vast options, student choice and pace,
focus on scientific process

Activity Inquiry process hampered by
mundane procedure & long waits

Simulations speed time, leave technique
lessons for later

Tools Paper and pencil Data representation & argument
construction

Assistance Limited, 1 teacher for 30
students

Automated 1:1 assistance of tutor agents

Assessment Large grain, limited assessment-
instruction continuity

Tutor agents monitor student development
at action level

1 Work performed while at Learning Research and Development Center, University of Pittsburgh

B.P. Goettl et al. (Eds.): ITS '98, LNCS 1452, pp. 166-175, 1998.
© Springer-Verlag Berlin Heidelberg 1998

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
Component-Based Construction of a Science Learning Space

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northwestern University,Institute for the Learning
Sciences,Evanston,IL,60208

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We present a vision for learning environments, called Science Learning Spaces, that are rich in engaging
content and activities, provide constructive experiences in scientific process skills, and are as
instructionally effective as a personal tutor. A Science Learning Space combines three independent
software systems: 1) lab/field simulations in which experiments are run and data is collected, 2)
modeling/construction tools in which data representations are created, analyzed and presented, and 3)
tutor agents that provide just-in-time assistance in higher order skills like experimental strategy,
representational tool choice, conjecturing, and argument. We believe that achieving this ambitious vision
will require collaborative efforts facilitated by a component-based software architecture. We have created
a feasibility demonstration that serves as an example and a call for further work toward achieving this
vision. In our demonstration, we combined 1) the Active Illustrations lab simulation environment, 2) the
Belvedere argumentation environment, and 3) a model-tracing Experimentation Tutor Agent. We
illustrate student interaction in this Learning Space and discuss the requirements, advantages, and
challenges in creating one.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 Component-Based Construction of a Science Learning Space 167

A Science Learning Space can be created by coordinating software components of
three types: 1) lab/field simulations in which experiments are run and data is
collected, 2) modeling/construction tools in which data representations are created,
analyzed and presented, and 3) tutor agents that provide just-in-time assistance in
higher order skills like experimental strategy, representational tool choice,
conjecturing, and argument. Although the full Science Learning Space vision is
currently out of reach, we have created a demonstration of its feasibility. This
demonstration serves as a model for future work and a call for further community
authoring toward achieving this vision.

The Need for Collaborative Component-Based Development
Research in intelligent learning environments typically involves designing and
implementing an entire system from scratch. Time and resources spent on software
engineering is taken away from the education and research the software is designed to
support. Today the typical solution is for research labs to work within the context of
an in-house software investment, evolving each new system from previous work. This
makes replication and sharing more difficult and can lead to maintenance and
deployment difficulties as restrictive platform requirements accumulate over time.

This situation is growing intolerable, and so recently there has been a surge of
interest in architectures and frameworks for interoperable and component-based
systems [Ritter & Koedinger, 1997; Roschelle & Kaput, 1995; Suthers & Jones,
1997]. This has led to a number of successful workshops on the topic (e.g.,
http://advlearn.lrdc.pitt.edu/its-arch/), the emergence of several standards efforts
specifically targeted to advanced educational technology (e.g.,
www.manta.ieee.org/p1484/), and new repositories for educational object components
(e.g., trp.research.apple.com). These efforts gain leverage from the rise of interactive
Web technology and its associated emphasis on standards-based interoperability.
Solutions for component-based systems are arriving, in the form of shared
communication protocols, markup languages, and metadata formats. Although the
component-based solutions developed to date are useful, they are inadequate for those
building component-based intelligent learning environments in which the components
must respond to the meaning of the content as well as its form and presentation. We
see the development of techniques for sharing semantics across components and
applications to be a critical research direction for the field.

Recently we conducted a demonstration of the feasibility of integrating three
different, independently developed components. Two of the components were
complete intelligent learning environments in their own right: Active Illustrations
[Forbus, 1997] enable learners to experiment with simulations of scientific
phenomena, and to receive explanations about the causal influences behind the results
[Forbus & Falkenhainer 1990; 1995]. Belvedere [Suthers & Jones, 1997; Suthers et
al., 1997] provides learners with an “evidence mapping” facility for recording
relationships between statements labeled as “hypotheses” and “data”. A Scientific
Argumentation Coach [Paolucci et al., 1996] guides students to seek empirical
support, consider alternate hypotheses, and avoid confirmation biases, among other
things. The third component was an instance of a model-tracing Tutor Agent [Ritter &
Koedinger, 1997] that contains a cognitive model of general experimentation and

168 Kenneth R. Koedinger et al.

argumentation process skills. This “Experimentation Tutor Agent” dynamically
assesses student performance and is available to provide students with just-in-time
feedback and context-sensitive advice. Our Learning Space Demonstration took place
in the context of meetings of ARPA’s Computer Aided Education and Training
Initiative program contractors. Using a MOO as a communication infrastructure, we
demonstrated a scenario in which a student poses a hypothesis in the Belvedere
evidence-mapping environment, uses the simulation to test that hypothesis in the
Active Illustration environment and sends the results back to Belvedere for integration
in the evidence map. Throughout this activity the Experimentation Tutor Agent was
monitoring student performance and was available to provide assistance.

From this experience we abstracted the notion of a Science Learning Space. In our
demonstration, the Space was filled with Active Illustrations as the lab/field
simulation component, Belvedere as a modeling/construction tool, and the
Experimentation Tutor Agent and Argumentation Coach in tutor roles. In this paper
we discuss how interoperability of these components was achieved through the use of
Translator components that enable communication between existing functional
components with little or no modification to them. We begin by examining the
constraints that developing intelligent learning environments impose on the nature
and types of components and their interactions, focusing on the importance of
semantic interoperability. We then describe the demonstration configuration in detail,
showing how it exploits a limited form of semantic interoperability. Finally, we
reflect on the requirements, advantages, and future directions in creating Science
Learning Spaces.

Components for Intelligent Learning Environments
Component-based development has a number purported economic and engineering
benefits. Component-based systems are more economical to build because prior
components can be re-used, saving time for new research and development efforts.
They are easier to maintain due to their modular design and easier to extend because
the underlying frameworks that make component-based development possible in the
first place also make it easier to add new components. We can also expect better
quality systems as developers can focus their efforts on their specialty, whether in
simulation, tool, or tutor development.

However, there is a deeper reason why we believe component-based educational
software is important: It will enable us to construct, by composition, the multiple
functionalities needed for a pedagogically complete learning environment. Various
genres of computer-based learning environments have had their advocates. Each
provides a valuable form of support for learning, but are insufficient in themselves.
Yet today, the high development costs associated with building each type of
environment leads to the deployment of systems with only a small subset of desirable
functionality.

For example, microworlds and simulations enable students to directly experience
the behavior of dynamic systems and in some cases to change that behavior,
experimenting with alternate models. These environments are consistent with the
notion that deeper learning takes place when learners construct their own knowledge

 Component-Based Construction of a Science Learning Space 169

through experience. However, simulations lack guidance: Taken alone, they provide
no tools for the articulation and reflection on this knowledge and no learning agenda
or intelligent assistance.

On the other hand, intelligent tutoring systems provide substantial guidance in the
form of a learning agenda, modeling of expert behavior, and intelligence assistance.
This form of guidance is particularly important in domains where the target
knowledge is not an easy induction from interactions with the artifact or system of
interest. In such domains, intelligent tutors can lead to dramatic, “one sigma”,
increases in student achievement [e.g., Koedinger, Anderson, Hadley, & Mark, 1997].

However, tutoring systems are themselves subject to the criticism. Emphasis on
knowledge engineering usually leaves little time for careful design of performance
tools to enhance pedagogical goals. Thus, there is a third need for representational
tools for manipulating data, searching for patterns, or articulating and testing new
knowledge. Spreadsheets, outliners, graphers, and other such tools provide
representational guidance that help learners see certain patterns, express certain
abstractions in concrete form, and discover new relationships. Representational tools
can be designed based on cognitive analysis to address particular learning objectives
[Koedinger, 1991; Reiser et al., 1991] and can function as “epistemic forms” [Collins
& Ferguson, 1993] that afford desirable knowledge-building interactions. Yet
representational tools provide only a subtle kind of guidance. As with simulations and
microworlds, direct tutoring interventions are sometimes needed as well. Fortunately
there is a double-synergy: Inspection of learners’ representations and simulation
actions can provide a tutor with valuable information about what kind of guidance is
needed.

We believe that the ability to routinely synthesize new intelligent learning
environments from off-the-shelf components that combine multiple functionalities
rarely found today is sufficient justification for moving to a component-based
development approach. The potential advantages of component-based systems must,
of course, be weighed against their costs. Creating composable software components
requires exposing enough of their internal representations, through carefully designed
protocols, so that effective communication is possible. Doing this in ways that
minimize communication overhead while maximizing reuse is a subtle design
problem which can require substantial extra work.

A Feasibility Demonstration of a Science Learning Space
In this section we describe the Science Learning Space demonstration that we
undertook. We begin with the learning activity that motivates our particular
combination of tools; then we describe the underlying architecture and step through
an example interaction scenario.

The Learning Activity: Scientific Inquiry
There is no point in combining components unless the learner benefits - in particular,
the functionality provided by each component must contribute to the facilitation of
effective learning interactions in some way. Consider scientific inquiry. Students have
difficulty with the basic distinction between empirical observations and theoretical

170 Kenneth R. Koedinger et al.

statements. They need to learn that theories are posed to explain and predict
occurrences and that theories are evaluated with respect to how consistent they are
with all of the relevant observed data. They need to seek relevant evidence, both
confirming and disconfirming, perform observations, and conduct experiments to test
hypotheses or to resolve theoretical arguments between hypotheses. Experimentation
requires certain process skills, such as the strategy of varying one feature at a time.
Evaluation of the results of experiments requires scientific argumentation skills. Thus,
this is a learning problem that could benefit from (1) experimentation in simulation
environments, aided by coaching based on a process model of effective
experimentation; and (2) articulation of and reflection upon one’s analysis of the
relationships between hypotheses and evidence, aided by coaching based on
principles of scientific argumentation.

In our demonstration scenario, we imagine a student engaging in an investigation
of the climate of Venus. She starts by posing a plausible hypothesis that Venus is cold
because its excessive cloud cover makes it so. Next, she uses the multiple tools and
intelligent assistance of the Science Learning Space to record, test, revise and argue
for this hypothesis.

The Implementation Architecture
We describe the abstract implementation architecture (see Figure 1) behind our
demonstration as one illustration of how several technologies enable the construction
of component-based systems. Our collaboration began with a Learning Space
demonstration involving an Experimentation Tutor Agent and Active Illustration
[Forbus, 1997] communicating through a Lambda-MOO derivative using the "MOO
Communications Protocol". Forbus had already made use of the MOO for
communication between the Active Illustration simulation engine and a simulation
user interface (bottom right of Figure 1). A MOO was chosen as the infrastructure
because its notion of persistent objects and multi-user design made it easy for
participants in experiments (both human and software) to be in a shared environment
despite being on different machines, often in different parts of the country. The open,
ASCII-based MOO Communications Protocol made it easy to add a Tutor Agent to
monitor student performance as the basis for providing context-sensitive assistance.
Koedinger used the plug-in tutor agent architecture [Ritter & Koedinger, 1997] which
employs a simple Translator component (small box upper right of Figure 1) to
manage the communication between tools and tutor agents. The Translator watched
for messages between the Simulation Interface and the Active Illustration server,
extracted messages indicating relevant student actions, and translated these student
actions into the “selection-action-input” form appropriate for semantic processing by
the Tutor Agent’s model-tracing engine.

M
O
O

B e l v e d e r e

E x p e r i m e n t
T u t o r A g e n t

S i m u l a t i o n
I n t e r f a c e

A c t i v e
I l l u s t r a t i o n

c l i e n t

A r g u m e n t
C o a c h

B e l v e d e r e
D a t a b a s e

B
O
R
B
I

S k i l l o m e t e r

Figure 1. Communication architecture used in the

demonstration.

 Component-Based Construction of a Science Learning Space 171

Subsequently, the Belvedere system and Argumentation Coach were added (left
side of Figure 1). Belvedere itself provides a communication architecture, described
in Suthers & Jones [1997] and abstracted as "BORBI" in Figure 1. Integration of the
Belvedere subsystem into the MOO required the addition of one translator component
(the other small box in the figure): no modification to Belvedere itself was required.
The translator watched the MOO for Hypothesis and Simulation Run objects sent by
the Simulation Interface. When seen, these were converted to Belvedere Hypothesis
and Data objects and placed in the user’s “in-box” for consideration.

Learning Scenario
Returning to our student who is thinking about planetary climate, we illustrate a
learning interaction scenario supported by our multi-application Learning Space. In
the opening situation (Figure 2), the student has recorded in Belvedere’s evidence-
mapping facility the hypothesis that Venus is cold because it is cloudy. On the left are
the Active Illustration simulation interface and the Tutor Agent’s Skillometer
showing initial estimates of the student’s level of skill on several subskills. Next,
Belvedere’s Argumentation Coach suggests that the student find some evidence for
this hypothesis (Figure 3). Since the student can’t go to Venus to experiment, she
decides to use an Active Illustration simulation of the Earth’s atmosphere as an analog
instead.

Figure 2. Opening situation: An initial

hypothesis.

Figure 3. Coaching scientific

argumentation

Figure 5. Plotting the results of the

experiment.

Figure 4. Creating an experimental run

of the simulation.

172 Kenneth R. Koedinger et al.

In the Active Illustration interface, the
student runs a baseline simulation using
normal cloud cover parameters for Earth.
The Tutor Agent observes these events in the
MOO and updates estimates of baseline
experimentation skills (lower portion of
Figure 4). Then the student constructs a
comparison simulation by increasing the
Earth’s cloud cover to 95%, much more like
Venus (Figure 4). If the student had
attempted to change more than one parameter of the simulation, the Experimentation
Tutor Agent would recognize this action as an instance of the change-more-than-one-
variable bug (see Table 2), and would have generated a feedback message to prompt
the student toward designing a more discriminating experiment. Having created
baseline and comparison experiments, the student uses Active Illustration’s plotting
facility to show the results (Figure 5). To her surprise, Earth gets hotter when cloud
cover increases. The student realizes that a new hypothesis is required. Using Active
Illustration’s hypothesis recording facility, the student creates the hypothesis that the
temperature of the atmosphere is affected positively by cloud cover and marks it as
confirmed (Figure 6).

Figure 6. Making a new hypothesis in Active

Illustration.

Figure 7. Evidence map with

experimental results.

The student then decides to send this hypothesis along with the results of the two
experiments back to the Belvedere application. She does this by selecting these
objects and clicking a “send to other tools” button. The objects are sent out on the
MOO, where they are observed by the Belvedere-MOO Translator. It filters messages
and translates hypothesis and data objects into Belvedere's representations and places
them in Belvedere’s “in-box”. The in-box is a place where new information is kept
until the student is ready to integrate it into the evidence map. The student selects
information objects from the in-box and places them in her evidence map. At this
point she uses Belvedere to construct the argument shown in Figure 7. The two
experiments are connected with an “and” link and then connected to the hypothesis
that temperature increases with cloud cover using an evidential “for” link. Finally,
this experimentally derived hypothesis is used to argue against the original idea that
Venus is cold because it is cloudy by making an evidential “against” link.

The Experimentation Tutor Agent is able to understand the semantics of the
experiment and hypothesis objects because it observed the history of the creation of
these objects in the Simulation. As a consequence, this agent can provide the student
with advice on the semantics of the argument. If, for instance, the student were to try

 Component-Based Construction of a Science Learning Space 173

to use only the comparison experiment as evidence for the hypothesis, the agent can remediate
this argumentation bug (see Table 2): “Just because the temperature was high with high cloud
cover is not enough to argue for your hypothesis; you must also cite the contrasting baseline
experiment where the temperature was lower with normal cloud cover.”

Table 2. Domain-Independent Productions for Experiments and Argument
Change-more-than-one-variable-bug (Pre-conception)
IF the goal is to discover a hypothesis and you have a first
experiment
THEN change some variable values to create a second experiment

Change-one-variable
IF the goal is to discover a hypothesis
 and you have a baseline experiment
THEN change one variable value to create a comparison experiment

One-trial-generalization-bug (Pre-conception)
IF the goal is argue for hypothesis "The greater the <cloud cover>
 the higher the <atmospheric temperature>"
 and you did an experiment where <cloud cover> was high
 and the resulting <atmospheric temperature> was high
THEN argue the hypothesis is true by citing this experiment

Argue-from-controlled-comparison
IF the goal is argue for hypothesis "The greater the <cloud cover>
 the higher the <atmospheric temperature>"
 and you did two experiments, a baseline and comparison
 and in one <cloud cover> was low and <temp> was low
 and in the other <cloud cover> was higher and <temp> was higher
THEN argue the hypothesis is true by citing these two experiments

Semantic Interoperability for Constructive Learning Interactions
Since all three systems made reference to the same set of objects (e.g., experiments, data,
hypotheses), it was critical that a shared semantics was achieved. Below we discuss some
alternate solutions and their roles.
Shared Ontologies
One possible approach to achieving semantic interoperability is to have a common
ontology of educational objects that each system accesses. Significant portions of our
communications were in effect a process of negotiating an informal shared ontology.
The process may have been more efficient and involved fewer misunderstandings if a
standard ontology or even reference vocabulary were available and known to all.

However, while shared ontologies may be worthy goals in the long term, they
require a high level of community consensus and standardization that is still well out
of reach (if not in defining the standards, certainly in having them take hold).
Furthermore, there is good reason to believe that multiple alternative representations
of the same objects or concepts are not only inevitable, but useful. Different
representations afford different kinds of processing. For example, the representation
of an experiment in the simulation stores numerous simulation-related details whereas
the Tutor Agent's representation of an experiment is at a more abstract level
appropriate for reasoning with, rather than about, experiments.
Translators to Preserve Advantages of Alternative Representations
The use of Translator components allow developers of component systems to make
their own representational decisions. Once these decisions have been made,
developers can get together to identify the shared semantics and specify translators to
implement them. It is not necessary to work out ahead of time the precise meaning
and structure of all symbol structures in a shared ontology. The Translator
components were critical to the relative ease in which we composed the three systems.
Our composition task would not have been as easy, however, if Active Illustrations

174 Kenneth R. Koedinger et al.

and Belvedere had not built from the start in an open client-server architecture. These
tools were “recordable” and “scriptable” by the Tutor Agent [Ritter & Koedinger,
1997] and by each other. Unfortunately, too few office applications or educational
objects are currently built in this open architecture.
Granularity and Persistence of Identity
The Active Illustrations simulation and Simulation Interface used the MOO to
communicate in terms of the multiple parameter settings that define a simulation run
or experimental trial, however, we wanted experimental trials to appear in Belvedere
as single nodes in the evidence map. We needed a way to coordinate this difference in
granularity while preserving the essential semantic identity of object representations
as they are moved from tool to tool. This design problem ultimately led us to better
understand how the software need for persistence of identity can sometimes be solved
by addressing the learner's same need.

We initially considered solving this problem by using the Belvedere-MOO
Translator to aggregate individual parameter setting and simulation events into “data”
objects that record the results of a particular trial. These data objects would then
appear automatically in Belvedere’s in-box. However, focusing on the needs of the
learner, we elected to follow a different approach for three major reasons. (1) Not all
simulation runs will be informative enough to use. We wanted to avoid cluttering the
in-box with many not so useful objects. (2) We wanted to encourage the learner to
reflect on which runs were worth recording, by requiring that the learner make the
decision of which to record. (3) The learner needs to make the connection between
her experiences in the simulation environment and the representational objects that
she manipulates in Belvedere. Hence the aggregated objects representing simulation
runs should be created while still in the simulation environment and given visual
identities recognizable to the learner, preferably by learner herself.

The Simulation Interface already enabled the user to provide textual labels for
simulation runs and we took advantage of that. We modified the Simulation Interface
to provide a facility for broadcasting labeled simulation summary objects to the MOO
(and hence to the Belvedere in-box) thereby enabling the learner to select relevant
results without leaving the simulation context. This example reveals one limitation of
a pure “plug and play” approach to component based systems: Communication
protocols cannot anticipate all future needs.

Conclusions
We described a case study of component-based construction of a Science Learning
Space, consisting of a simulation tool (Active Illustrations), a modeling tool
(Belvedere), and tutoring agents (the Experimentation Tutor Agent and
Argumentation Coach). We discussed several approaches to reducing the effort
required to “hook up” diverse components and demonstrated the value of sharing
semantics between applications. Information objects created with particular semantic
identities in Active Illustrations retained their identity in their treatment in Belvedere
and its Argumentation Coach. Furthermore, the Experimentation Tutor Agent treated
these objects as having the same semantics in both situations.

The Science Learning Space vision is to combine the pedagogical benefits of
simulations, modeling tools, and intelligent assistance to support students in cycles of
inquiry -- questioning, hypothesizing, modeling, reflecting and revising -- to both
acquire new scientific content and to improve reasoning and learning skills. A major
obstacle at this point is that too few developers are creating open components that are
recordable and scriptable by other applications. Although media interoperability is
widely available between “office” tools in current software environments, our vision
is of a semantic interoperability between knowledge-based software for learning. In
this vision, learner-constructed objects will maintain their meaning (though not
necessarily the same underlying representation) when moved from one tool to

 Component-Based Construction of a Science Learning Space 175

another. They will remain meaningful not only to the human user, but also to the
software agents that interact with each tool. Consistent treatment of the learner’s
constructions in different contexts by different software agents reinforces the deep
semantics that we want learners to extract and generalize from specific experiences.
At the same time, the contextual semantics of these objects accumulate as they are
used. In a Science Learning Space, students experience the concept of experimental
trial, for instance, by first thinking about it, designing discriminating trials in the
simulation, and then thinking with it, using these trials to construct an argument. Tutor
agents support students in properly encoding these learning experiences and in
engaging in effective scientific reasoning processes. We hope our initial efforts to
integrate components in a Science Learning Space point the way to future, more
complete efforts.

Acknowledgments
The DARPA CAETI program funded the Active Illustrations, Belvedere, and Tutor
Agents projects. Thanks to Kirstie Bellman for providing inspiration for this
collaboration, to Danny Bobrow and Mark Shirley for providing the MOO
infrastructure, and to programming staff Ray Pelletier, Dan Jones, Leo Ureel, and
Tamar Gutman.

References
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons

learned. The Journal of the Learning Sciences, 4 (2) 167-207.

Anderson, J. R. & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of
the International Conference of the Learning Sciences, 1-8. Evanston, IL.

Collins, A. & Ferguson, W. (1993). Epistemic Forms and Epistemic Games: Structures and Strategies to
Guide Inquiry. Educational Psychologist,28(1),25-42.

Forbus, K. (1997). Using qualitative physics to create articulate educational software. IEEE Expert, 12(3).

Forbus, K. & Falkenhainer, B. (1990.) Self-explanatory simulations: An integration of qualitative and
quantitative knowledge, Proceedings of AAAI-90.

Forbus, K. & Falkenhainer, B. (1995.) Scaling up Self-Explanatory Simulators: Polynomial-time
Compilation. Proceedings of IJCAI-95, Montreal, Canada.

Koedinger, K.R. (1991). On the design of novel notations and actions to facilitate thinking and learning.
In Proceedings of the International Conference on the Learning Sciences, (pp. 266-273).
Charlottesville, VA: AACE.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., & Mark, M. A. (1997). Intelligent tutoring goes to
school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

Paolucci, M., Suthers, D., & Weiner, A. (1996). Automated advice-giving strategies for scientific inquiry.
Intelligent Tutoring Systems, 3rd International Conference, Montreal, June 12-14, 1996.

Reiser, B. J., Beekelaar, R., Tyle, A., & Merrill, D. C. (1991). GIL: Scaffolding learning to program with
reasoning-congruent representations. In Proceedings of the International Conference on the Learning
Sciences, (pp. 382-388). Charlottesville, VA: AACE.

Ritter, S. & Koedinger, K. R. (1997). An architecture for plug-in tutoring agents. In Journal of Artificial
Intelligence in Education, 7 (3/4), 315-347. Charlottesville, VA: Association for the Advancement of
Computing in Education.

Roschelle, J. & Kaput, J. (1995). Educational software architecture and systemic impact: The promise of
component software. Presented at AERA Annual Meeting, San Francisco, April 19, 1995.

Suthers, D. & Jones, D. (1997). An architecture for intelligent collaborative educational systems. AI-Ed
97, the 8th World Conf. on Artificial Intelligence in Education, Kobe Japan, August 20-22, 1997.

Suthers, D., Toth, E., and Weiner, A. (1997). An Integrated Approach to Implementing Collaborative
Inquiry in the Classroom. Computer Supported Collaborative Learning (CSCL'97), Toronto,
December, 1997.

	Component-Based Construction of a Science Learning Space
	The Science Learning Space Vision

	Component-Based Construction of a Science Learning Space
	The Science Learning Space Vision
	The Need for Collaborative Component-Based Development

	Components for Intelligent Learning Environments
	A Feasibility Demonstration of a Science Learning Space
	The Learning Activity: Scientific Inquiry
	The Implementation Architecture
	Learning Scenario

	Semantic Interoperability for Constructive Learning Interactions
	Shared Ontologies
	Translators to Preserve Advantages of Alternative Representations
	Granularity and Persistence of Identity

	Conclusions
	Acknowledgments
	References

